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One needs to fail a lot to discover a working drug
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It is a tall mountain to climb
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How to develop new efficient treatments
faster?

How to make better decisions 1in the
process?



It is a tall mountain to climb

How to develop new efficient treatments
faster?

How to make better decisions 1in the
process?

Recommendation systems can help 1in
multiple places




Recommendation problems in drug discovery
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Drugs, genes, diseases

Compound




|t gets complex very fast
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It is rarely just a single gene
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Find a molecular network behind a disease

‘ disease ~ a wolecular process
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Biomedical knowledge is spread across multiple resources
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Graph makes things simpler 45 BIKG

® Biomedical information often
; comes in forms of networks and
\\\ s/ ‘ hierarchies

® Graph is a convenient way to
organise it

® BIKG (our internal knowledge
// graph): 60+ data sources

) including - omics and data
extracted from the literature

e 11 M nodes, 1 B edges

® Use graph as a source of context
and features for recommenders



Early success story:

graph-based
recommendations




Applied recommendation problem #1:
contextualize experimental data
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Drug resistance in lung
cancer

Occurs 1in a sub-population
of patients

Resistance landscape 1s
complex


https://scholar.google.com/citations?user=2P7ZWMAAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=PSxYYl4AAAAJ&hl=en&oi=sra

How to help scientist find key genes faster?
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An ideal target ] Expression
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An ideal target does not exist Fpression
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Target selection as an optimization problem
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Hybrid feature set: source features from the graph
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Hybrid feature set: combine with clinical features
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Approaches
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SkywalkR, interactive interface

skywalkR
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http://github.com/AstraZeneca/skywalkR
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Model domain scientist as a black box classifier
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Full feature set
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https://www.biorxiv.org/content/10.1101/2021.07.23.453506v1

Graph-derived features follow clinical in unbiased setting
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https://www.biorxiv.org/content/10.1101/2021.07.23.453506v1

Annotation by the experts

WWTR1  WW domain containing transcription resulator 1
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for additional evidence behind the gene recommendation please see gywalkR
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| Novel, but credible hit 2
_J Novel, not credible hit 1
"] Not novel, not credible hit 4

please include any additional details about ongoing experiments for
this marker, or if this has been discussed at (pre)TSID.

TASK_NUM: 1 TOTAL_TASKS_NUM: 42

prodigy



Most of recommendations are ‘novel & credible
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https://www.biorxiv.org/content/10.1101/2021.07.23.453506v1

Experimental validation /7 wiro
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https://www.biorxiv.org/content/10.1101/2021.07.23.453506v1

Imperfect, yet already useful recommendation system
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G
Take home message ﬁr -- -

® Drug discovery 1is an exciting field for recommender systems
® Relatively simple recommenders can have a lot of impact

® Need for recommenders that can operate in unsupervised or weakly
supervised settings

e There are a number of challenges®

Read more in the extended deck:
https://astrazeneca.github.io/recsys21gogleva/
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Translating recommendation approaches to

biomedical field: a few complications




Biological entities are complex

complex gene interactions diseases can be Poorll/ defined
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Validation is slow and expensive
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Implicit & explicit feedback is scarce

just a few 'deep’

ne,eols SQQOV\OQS can ‘tod(e ‘/COJ'S experts

€
I & eperts
S I |
—\; @ n vitro

&
I

po #»
Peedback o ¥ N

)@ n Vivo =
— / ecomw\e,nder
&




Team of experts rather than a single user makes decisions
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Previous literature biases users decisions

Moo(e,rod:e_ly studied

/ Dark matter
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filter bubble:

o small number of well studied genes tends
to 3e_‘t the credit

'‘dark matter' of human genome
remains undmaplorep(




Ground truths are rare and context-specific

gene 4 interacts gene B

with

same Time: ? same plaeez &’ same 5-1ene_tic
- disease stage - Tissue background

- devalopmental sto«je - organ

S there is a lot of data out There,
W but never the data you need to train your modlel



Portfolio problem vs single choice:
continuously optimize based on constantly changing evidence
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Supplementary:

supervised recommendations




Can we learn from previous drug trials?

® Thousands of clinical trials
preclinical experiments
(internal + external)

e Tdea: use data on previous
(potential) targets as
training data for a bre—clinical

Clinical trials

supervised model



Can we learn from previous drug trials?

® Represent genes with experimentally derived and KG-derived

features

O Experimental - activity in certain bio processes
O KG-derived - graph distances, embedding distances, etc. etc.

Pot. Gene — :*/¥;}:;»
Target X \* 7/ P



Can we learn from previous drug trials?

® Train a supervised ranking model (LightGBM) with randomly
sampled targets as negatives and clinically promising
targets as positives

1 |




Human-Model trust

® We need biologist’s to sign off on our model’s
recommendations

® For that, we need their trust

O NDCG or other “ML” metrics mean nothing to a biologist
O Biologists expect certain genes as a sanity-check

-




Human-Model trust

“I would expect to see Gene X in your
recommendations - otherwise we have a
problem”




Human-Model trust

“Yup the model 1is recognizing Gene X as a
promising gene target!”




Human-Model trust

“How do I know the model 1isn’t just
regurgitating what I’ve told you?”




Human-Model trust

“Well, through something called cross
validation we can ascertain that the
model generalizes and -”




Human-Model trust

ugh something called cross
Ne can ascertain that the
alizes and -”
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Human-Model trust

® Problem: human genome 1is finite
(Since we rank the full genome, the training set will exist somewhere 1in the
final model output)

® How can we guarantee that no “regurgitation” is happening
during inference?



“Honest” Ensembling

® Training data is split among an ensemble of models
e If a gene has been seen by a model during training - this
model can’t rank 1its target-aptitude during inference



“Honest” Ensembling

Full list of
ranked qenes
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Jury is still out

® Training data: genes that have previously been found
promising in COPD (Chronic obstructive pulmonary disease)
e After ranking:

o0 Take the top ~200 genes

o Filter for known involvement in a number of interesting molecular
processes

O Bring to biologists for manual quality control
e => 29 potential gene targets are now in experimental
validation



